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We study numerically and analytically the turbulent diffusion characteristics in a
low-Froude-number turbulent shear flow beneath a free surface. In the numerical
study, the Navier–Stokes equations are solved directly subject to viscous boundary
conditions at the free surface. From an ensemble of such simulations, we find that a
boundary layer develops at the free surface characterized by a fast reduction in the
value of the eddy viscosity. As the free surface is approached, the magnitude of the
mean shear initially increases over the boundary (outer) layer, reaches a maximum and
then drops to zero inside a much thinner inner layer. To understand and model this
behaviour, we derive an analytical similarity solution for the mean flow. This solution
predicts well the shape and the time-scaling behaviour of the mean flow obtained in
the direct simulations. The theoretical solution is then used to derive scaling relations
for the thickness of the inner and outer layers. Based on this similarity solution,
we propose a free-surface function model for large-eddy simulations of free-surface
turbulence. This new model correctly accounts for the variations of the Smagorinsky
coefficient over the free-surface boundary layer and is validated in both a priori and
a posteriori tests.

1. Introduction
The interaction of turbulence with a free surface is a problem essential to many

applications, from air–sea interactions and transports to sensing of ship wakes. While
a direct approach to these problems is still a formidable task, understanding the
fundamental mechanism of turbulent diffusion near a free surface can facilitate
considerably theoretical modelling and numerical simulations of the actual problems.

The turbulent diffusion near a free surface has been studied in the past by Hunt
(1954), Ellison (1960), Levich (1962), Jobson & Sayre (1970), Davis (1972), Lee &
Gill (1977), and Ueda et al. (1977). More recently there has been renewed interest in
the problem of free-surface turbulence spurred by the availability of high-resolution
numerical simulations and state-of-the-art experimental techniques. Numerical sim-
ulations of free-surface turbulence have been performed, for example, by Lam &
Banerjee (1988), Handler et al. (1991, 1993), Leighton et al. (1991), Swean et al.
(1991), Borue, Orszag & Staroselsky (1995), Dimas & Triantafyllou (1995), Pan &
Banerjee (1995), Perot & Moin (1995), and Walker, Leighton & Garza-Rios (1996);
while experimental measurements were obtained by Komori et al. (1982), Komori,
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Murakami & Ueda (1989), Nakagawa & Nezu (1981), Rashidi & Banerjee (1988,
1990), Gharib, Dabiri & Zhang (1994), Rashidi (1997), among many others.

In general, the free surface influences the evolution of turbulence in the flow through
two effects: (a) the kinematic restriction of not allowing complete freedom for motions
along the vertical direction; and (b) the vanishing of stresses at the free surface. It is
now understood that, near the free surface, turbulence intensity in the horizontal plane
is increased at the expense of that in the vertical direction. Furthermore, very near the
free surface, vortex filaments attach to the free surface almost perpendicularly, with
considerable dissipation of enstrophy. The first effect is attributed primarily to the
kinematic boundary condition at the free surface which reduces the vertical velocity
fluctuations. The second effect is attributed to the dynamic zero-stress condition. Both
properties can be characterized as ‘generic’ of free-surface turbulence in the sense that
they have been observed in all different types of free-surface turbulence flows. One
can therefore loosely talk of a ‘free-surface boundary layer’ as a region of the flow
with properties dominated by the effect of the free surface.

In a recent work (Shen et al. 1999), the features of a free-surface turbulent shear
flow in the near-surface region are examined in detail including the distinction and
elucidation of an outer ‘blockage’ layer and an inner ‘surface layer’ at the free surface.
Shen et al. (1999), however, did not provide quantitative definitions of these free-
surface layers, which are important to the modelling of the free-surface turbulence.

The main goal of the present paper is to quantitatively study the free-surface
boundary layer in order to obtain insights necessary for turbulent modelling of free-
surface flows. We use a combination of numerical simulation and theoretical analysis.
Direct numerical simulation (DNS) is used to expound and quantify the free-surface
turbulence boundary layer and also to confirm and calibrate the analytical solution.
We adopt an eddy viscosity model and obtain an analytical similarity solution of
the horizontally-averaged equation. The theoretical solution predicts well the surface
layer behaviour obtained from DNS and is then used to predict the scaling properties
of the boundary layer. The similarity solution also provides the basis for a new
free-surface function model (FFM) for large-eddy simulation (LES) of free-surface
turbulence.

The paper is organized as follows: in § 2 we provide the mathematical formulation
for turbulent shear flow in the presence of a free surface. We outline the DNS
implementation in § 3. The main DNS results are presented in § 4, which include
the effects of the free surface on the mean shear and the eddy viscosity and the
quantification of the free-surface layers. In § 5, we derive a similarity solution of the
horizontally-averaged equation, confirm it against the DNS results, and use it to
obtain scaling properties of the free-surface layers. As an application, we propose in
§ 6 a free-surface function model based on the similarity solution. The efficacy of this
FFM for large-eddy simulation of free-surface turbulence is then demonstrated using
both a priori and a posteriori tests. Finally in § 7, we present the conclusions.

2. Mathematical formulation
We consider a turbulent shear flow with a free surface at low Froude numbers.

Referring to figure 1, the frame of reference has axes x, y, and z, where x and y are
horizontal, z is vertical, positive upward, with the z = 0 plane coinciding with the
undisturbed free surface. The mean shear is two-dimensional and is in the (x, z)-plane.
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Figure 1. Schematic of a turbulent shear flow under a free surface.

The governing equations are the Navier–Stokes and continuity equations:
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Here u, v, and w are the velocity components in x-, y-, and z- directions, respectively;
p is the dynamic pressure, ρ the density, and ν the kinematic viscosity.

Consistent with the small Froude number flows, the free-surface elevation h(x, y, t)
is small and we linearize the free-surface boundary conditions as follows:

(i) Neglecting surface tension and modelling the air as a constant-pressure fluid
layer, the balance of two tangential and one normal stress components at the free
surface gives the dynamic boundary conditions:

ν

(
∂u

∂z
+
∂w

∂x

)
= 0 on z = 0, (2.5)
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where g is gravitational acceleration.
(ii) The kinematic boundary condition is, upon Taylor expanding about z = 0 and

using (2.4),
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3. Direct numerical simulations (DNS)
We start with an initial shear flow profile given by

U(z)

U0

= 1− 0.9988 sech2

(
0.88137

z

L0

)
, (3.1)

which is half of the mean velocity profile measured in the wake of a NACA 0003
hydrofoil in unbounded fluid (Mattingly & Criminale 1972). The Orr–Sommerfeld
stability analysis of this velocity profile has been performed by Triantafyllou & Dimas
(1989) and a detailed study on the nonlinear evolution of the instability is reported by
Dimas & Triantafyllou (1994). Hereafter, all variables are normalized by the initial
mean shear extent L0 and the initial velocity deficit U0.

In this study, the Froude number Fr0 ≡ U0/
√
gL0 is 0.7, and we study three different

initial Reynolds numbers Re0 ≡ U0L0/ν = 700, 1000, 1400. For this small value of
Fr0, the effect of Froude number on the free-surface turbulence is proportionately
small with the exception of pressure–strain effects (Shen et al. 1999). The effect of
non-zero Froude number on free-surface turbulence statistics is examined in some
detail in Shen et al. (1999) and will not be taken up here.

To simulate turbulence, we add a small divergence-free random velocity noise to
the initial flow (3.1) and the simulation is carried out until a statistical steady-state
condition is reached in the free-surface region.

Equations (2.1)–(2.4) subject to the free-surface boundary conditions (2.5)–(2.8) are
solved numerically as an initial-boundary-value problem. The computational domain
is closed by imposing periodic conditions on the four vertical boundaries far away, a
free-surface boundary on the top, and a free-slip boundary on the (deep) bottom. The
numerical method we use is based on a marker and cell method (Harlow & Welch
1965). We use a projection method which couples the Navier–Stokes equations and
continuity equation to obtain a Poisson equation for the pressure with a divergence
correction. The Poisson equation for pressure is solved at each sub-timestep. The
simulation is advanced in time using an explicit second-order Runge–Kutta time
integrator. A second-order finite-difference scheme at a staggered grid is used in the
vertical direction wherein u, v, p are assigned at regular grids and w is assigned at
staggered grids. In the horizontal directions, sixth-order finite-difference schemes are
employed. Details of the numerical implementation can be found in Shen et al. (1999).

For later reference, in view of the statistical homogeneity in the horizontal direc-
tions, we use spatial averaging over the (x, y)-plane to define the average of a quantity
φ which we denote by 〈φ〉. The fluctuation of φ is denoted by φ′ ≡ φ− 〈φ〉, and the
root-mean-square variation of φ we denote by φrms . To obtain more reliable statistics,
for each case we perform 25 repeated simulations using different seeds for the initial
random field. Without further reference, all numerical results presented in this paper
are ensemble averages of the DNS realizations.

The computational domain size is 10.4722 (horizontally)× 6 (vertically) for which
we use 1282 × 192 grid points in our simulations. The timestep is 0.005. Based on the
kinetic energy dissipation rate, the Kolmogorov length scale is estimated to be around
0.04, which is of the same order as the grid sizes (∆x = ∆y = 10.472/128 ' 0.08;
∆z = 6/192 ' 0.03).

In order to ensure that all dynamically significant scales are resolved, we also carry
out simulations using different grid sizes and timesteps. Figure 2(a) plots the relative
errors of the mean velocity profile obtained with coarser resolutions relative to that
using a fine resolution. It is shown that halving the grid size and timestep results in
changes in the mean velocity profile of less than O(1%). All the results presented in
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Figure 2. (a) Relative error in the mean velocity profile (at t = 80) ε〈u〉 ≡ |(〈u〉lowres −
〈u〉highres )/〈u〉highres | using a fine resolution of 1282 × 192 grid points and timestep 0.005, com-
pared to a lower resolution using 642×96 grid points and timestep: ————, 0.005; and – – –
–, 0.01. (b) Time evolution of the mean velocity profile 〈u〉(z) at: ————, t = 0; – – – –, 20;
– · – · –, 40; · · · · · · ·, 60; −−− −−−, 80. The case plotted is for Re0 = 1000 and Fr0 = 0.7.

this paper are hereafter based on the fine spatial/temporal resolution given above.
The time evolution of the mean velocity profile is plotted in figure 2(b) which shows,
as expected, flattening of the mean shear with time (mainly) as a result of turbulent
diffusion. The quantification of this development of the mean velocity in terms of
profile shape and the associated time scaling behaviour is a main focus of this paper.

As a further validation, we consider the problem of the interaction between a
small-amplitude two-dimensional progressive wave and the mean shear flow (3.1)
under a free surface. We compare the direct simulation evolution to that obtained
from an Orr–Sommerfeld stability analysis of this problem (see Zhang 1996, which is
a viscous extension of Triantafyllou & Dimas 1989). Figure 3(a) plots the growth rate
of the surface wave amplitude as a function of wavenumber. Figure 3(b) compares the
time-evolution of this amplitude predicted from DNS to the Orr–Sommerfeld analysis
for wavenumber 0.6 (which corresponds to the minimum wavenumber for the present
DNS horizontal domain size of 10.472). The agreement is quite satisfactory.

Finally, we report that in all our simulations, the total kinetic energy is conserved
to less than O(1)% error and the maximum mass divergence at any grid point is
O(10−14).

4. Numerical results
4.1. Effects of the free-surface boundary conditions

The zero-stress boundary conditions at the free surface influence quantities that
involve derivatives of the velocity, for example the horizontal components of the
vorticity. Using (2.6) and (2.5), we obtain the values of the two horizontal components
of the vorticity at the free surface:
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Figure 3. (a) Growth rate ωi (the wave amplitude grows at the rate exp (ωit)) as a function of
wavenumber k, obtained from Orr–Sommerfeld analysis of the mean flow (3.1) for Re0 = 1000 and
Fr0 = 0.7. (b) Growth in amplitude of a two-dimensional surface progressive wave at wavenumber
k = 0.6: ————, Orr–Sommerfeld analysis; – – – –, direct simulation result.
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The vertical velocity w is small at z = 0 owing to the constraint of the vertical motion
at the free surface. It follows that ωx and ωy are small at z = 0. One thus expects
that there exists a region over which ωx and ωy change from their bulk values to the
small surface values. We denote this surface region the ‘inner’ layer. (The ‘outer’ layer
will be introduced in § 4.3.) The presence of this layer is shown clearly in the DNS
results. Figure 4 plots the r.m.s. fluctuations of the horizontal vorticity components
as functions of depth. The thin region of fast variations near the free surface defines
the inner layer.

We remark that the presence of the inner layer in terms of velocity derivatives
can also be identified in the results of previous free-surface turbulence studies, e.g.
Leighton et al. (1991), Borue et al. (1995), Pan & Banerjee (1995), Walker et al. (1996),
and Shen et al. (1999).
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4.2. The mean flow field

Our present interest is the effects of the free-surface boundary layer(s) on the near-
surface turbulent diffusion. To quantify these effects, the mean shear, rather than the
mean velocity, is the main quantity of interest since the zero-stress boundary condition
at the free surface requires it to vanish there.

For the mean (horizontally averaged) velocity, lateral symmetry of the problem
obtains that 〈v〉 = 0. Moreover, upon averaging (2.4), we obtain

∂〈w〉
∂z

= 0. (4.3)

Far below the free surface, 〈w〉 → 0. Thus, 〈w〉 = 0 everywhere.
Upon averaging the y-momentum equation (2.2) we obtain

∂〈v〉
∂t

+
∂(〈v〉〈w〉)

∂z
+
∂〈v′w′〉
∂z

= ν
∂2〈v〉
∂z2

. (4.4)

Since 〈v〉 = 〈w〉 = 0 everywhere, we conclude that ∂〈v′w′〉/∂z = 0, and consequently
that 〈v′w′〉 is constant. Far below the free surface 〈v′w′〉 → 0, therefore 〈v′w′〉 = 0
everywhere. Thus the turbulent diffusion in the vertical direction is completely speci-
fied by the Reynolds stress 〈−u′w′〉.

Averaging the x-momentum equation (2.1) yields

∂〈u〉
∂t

+
∂〈u′w′〉
∂z

= ν
∂2〈u〉
∂z2

. (4.5)

We define the eddy viscosity νe as usual:

νe ≡ 〈−u
′w′〉

∂〈u〉/∂z . (4.6)

We can now re-write (4.5) as follows:

∂〈u〉
∂t
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∂

∂z

(
(ν + νe)

∂〈u〉
∂z

)
. (4.7)

Note that since the mean shear vanishes at the free surface (upon horizontal averaging
of (2.5)):

∂〈u〉
∂z

= 0, on z = 0; (4.8)

equation (4.6) requires (for finite νe) that 〈−u′w′〉 also vanishes at z = 0. Applying
l’Hopital’s rule to (4.6), we obtain the limiting value of the eddy viscosity:

νe|z= 0 =
∂〈−u′w′〉/∂z|z= 0

∂2〈u〉/∂z2|z= 0

. (4.9)

The eddy viscosity is an even function of z, hence

∂νe

∂z

∣∣∣∣
z= 0

= 0. (4.10)

Equation (4.9) gives, in general, a non-zero value of the eddy viscosity at the free
surface, proportional to the flux of the momentum tensor at the free surface. In the
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Figure 5. Profiles of eddy viscosity νe at different times. Re0 = 1000 and Fr0 = 0.7.

special case of a two-dimensional flow in the (x, z)-plane, where v′ = 0, the right-hand
side of (4.9) vanishes. In summary then, for a two-dimensional flow, we have

νe|z= 0 =
∂νe

∂z

∣∣∣∣∣
z= 0

= 0. (4.11)

4.3. Quantitative definition of the free-surface boundary layer

The thin inner layer of fast variation of the vorticity shown in figure 4 is not the only
region that is influenced by the free surface (but it is the most obvious to see). There
is a wider region which is also influenced by the surface. A good indicator of this is
the variation of the eddy viscosity – far from the surface, the eddy viscosity reaches an
almost constant value, whereas, close to the free surface, the eddy viscosity is reduced
abruptly to its surface value. This free-surface ‘outer’ boundary layer (hereafter the
‘outer’ layer) can be seen in figures 5 and 6. Figure 5 shows the variation of the eddy
viscosity with depth at various times and indicates the spatial extent of the outer
layer. Figure 6 shows the variation of the eddy viscosity with time at various depths,
and thus indicates the time required in our simulation for the boundary layer(s)
to obtain the quasi-steady form (t>∼ 60 for Re0 = 1000; this is also the case for
Re0 = 700 and 1400; these results are not plotted here).

The reduction of the eddy viscosity in a region near the free surface has also been
seen in the measured data of Ueda et al. (1977) for open-channel flow. In that study,
the value of the eddy viscosity at the free surface is assumed to be zero. This turns
out to be not completely valid since the mixing length does not vanish at the free
surface. The surface value of νe is, in fact, small and comparable to that of molecular
viscosity ν. This is indicated from scaling arguments (see § 5.3) and is verified by our
direct simulations. The value of νe at the free surface is exactly zero only in the limit
of a strictly two-dimensional flow (v = v′ = 0).

For later reference, we denote the thickness of the outer layer by `a, and the value
of the eddy viscosity outside `a in the bulk of the flow by νea. From dimensional
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analysis, a quantitative estimate for `a can be obtained and is given by

`2
a ∼ 2νea

∂2νe/∂z2|z= 0

. (4.12)

Another important observation here is the vertical variation of the mean shear over
the free-surface boundary layer (see figure 7a). As the free surface is approached, the
magnitude of the mean shear initially increases, and then drops rapidly to zero at the
free surface. The magnitude of the mean shear thus exhibits two extrema near the
free surface: a local minimum, and, much closer to the free surface, a local maximum.

The above features can be understood if we connect the depth variation of the
mean shear to that of the eddy viscosity: inside the outer layer, the eddy viscosity
decreases (figure 5) at a rate faster of that of the Reynolds stress (figure 7b). As a
result, the magnitude of the mean shear is increased. Inside a much thinner inner
layer, the mean shear then drops abruptly to zero in order to satisfy the zero-stress
condition (4.8) at the free surface.

Based on this understanding, the thickness of the inner layer at the free surface
can be defined as the distance from the free surface to the local maximum of the
mean shear. Correspondingly, for the outer layer, the thickness can be defined as
the distance of the local minimum of the mean shear from the free surface, which
is physically more direct than the estimate (4.12) in terms of the curvature of νe at
the free surface. Thus, with these definitions, the thicknesses of the surface layers can
be obtained directly, for example, from an experimental determination of the mean
velocity profile alone.
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Figure 7. (a) Mean shear profiles ∂〈u〉/∂z; and (b) Reynolds stress profile 〈−u′w′〉 at different
times. Re0 = 1000 and Fr0 = 0.7.

5. Analytical similarity solution
5.1. Similarity solution

From figure 5, one can observe that, at large times, the flow generally approaches a
self-similar state: the temporal variation of the eddy viscosity in the bulk of the flow
below is small, while the length scale of the spatial variation of the eddy viscosity
increases with time. This suggests that one may look for a self-similar solution, say,
of the form

U∞ − 〈u〉
Ud

= f(η), (5.1)

where U∞ ≡ 〈u〉|z→−∞, Ud = U∞−〈u〉|z= 0 is the velocity deficit, and η is the similarity
variable

η = z/b, (5.2)

with b measuring the extent of the mean shear in the flow. Note that both Ud and
b are generally functions of time. This is done in order for the similarity solution
to be comparable with the results of the simulation which refers to a temporally
evolving flow. Extension of the similarity solution methodology to spatially evolving
flows, which may better correspond to certain experimentally measured conditions, is
straightforward and will not be done here.

The mean velocity 〈u〉 satisfies (4.7) subject to the boundary condition (4.8) on the
free surface. For the eddy viscosity, it is important to take into account its variation
with depth, in other words, the dependence of νe on Ud, b, the distance from the free
surface z, and the molecular viscosity ν. Dimensional analysis then yields

νe

Udb
= ψ

(
η;
Udb

ν

)
, (5.3)

where ψ is some function of the similarity variable assumed known. We denote by ψa
the value of ψ well below the free surface, i.e. outside the outer layer; and by ψ0 the
value of ψ at the free surface. One important point here is that near the free surface,
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i.e. inside the outer layer, ψ should also depend on the Reynolds number, whereas
far below the free surface, ψ should be independent of the Reynolds number.

Following the usual procedure (see e.g. Lesieur 1997), we find that Ud and b are
related by

Udb = C0, (5.4)

where C0 is some constant. For the function f(η), we find that it satisfies the ordinary
differential equation

ηf′ + f = −
(
b

db

dt

)−1
d

dη

[
(ν +Udbψ)f′

]
, (5.5)

subject to the boundary conditions

f(0) = 1, f′(0) = 0, and f′(−∞) = 0. (5.6)

It remains to specify the value of f′′(0). The appropriate choice can be made by
writing (5.5) at η = 0:

(ν +Udbψ0)f
′′(0) = −bdb

dt
. (5.7)

The length b is the extent of the shear flow, which should be much greater than that
of the outer layer. Consequently b should diffuse at a rate proportional to the value
of the eddy viscosity in the bulk of the flow. This dictates the following choice:

f′′(0) = −ν +Udbψa

ν +Udbψ0

, (5.8)

and (5.7) becomes

b
db

dt
= ν +Udbψa. (5.9)

Upon integration of (5.9), we obtain that b evolves in time as follows:

b =
√

2(ν +Udbψa)t+ Q, (5.10)

where Q is a constant of integration. The velocity deficit Ud is given by

Ud =
C0√

2(ν +Udbψa)t+ Q
. (5.11)

Moreover by integrating (5.5) twice (subject to (5.6) and (5.8)) with respect to η we
obtain the following expression:

f(η) = exp

(
−
∫ η

0

s(ν +Udbψa)

ν +Udbψ(s)
ds

)
. (5.12)

Thus, we find that the length scale increases like the square root of t and the velocity
deficit decreases at the inverse of this rate, as one may expect from a similarity solution.
We note however that the choice (5.8) (which is based on physical reasoning) implies
that f′′(0) is a large number since νea = Udbψa is much greater than νe0 ≡ νe|z=0 and
ν. Consequently f′(η) has a region of fast variation in the vicinity of η = 0 which
corresponds to the free-surface inner layer.

The similarity solution (5.12) provides us with a clear picture of the mean flow, and
contains the basic physical features of interest. It remains to see how well it can fit
the results of direct numerical simulation.
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Re0 = 700 Re0 = 1000 Re0 = 1400

t Ud b C0 Ud b C0 Ud b C0

60 0.680 1.529 1.040 0.612 1.669 1.021 0.602 1.684 1.014
65 0.644 1.617 1.041 0.587 1.744 1.024 0.575 1.753 1.008
70 0.621 1.683 1.045 0.566 1.815 1.027 0.557 1.816 1.012
75 0.591 1.768 1.045 0.544 1.874 1.019 0.536 1.880 1.008
80 0.566 1.853 1.049 0.527 1.939 1.022 0.518 1.939 1.004

Table 1. Variation with time of the mean velocity deficit Ud, the mean shear extent b, and the
product C0 = Udb, for different Re0.

5.2. Comparison between theoretical similarity solution and direct simulations

In order to compare (5.12) with the results of direct numerical simulations, we propose
a simple Gaussian fit to the eddy viscosity (the validity of this particular choice will
be subsequently supported by numerical results):

ψ =
νe

Udb
= ψa − (ψa − ψ0) exp (−η2/a2), (5.13)

where a is proportional to the non-dimensional thickness of the outer layer (i.e.
a ∼ `a/b). Using (5.13) we obtain from (5.12)

f(η) = exp (−η2/2)

[
1/Re+ ψ0

1/Re+ ψa − (ψa − ψ0) exp (−η2/a2)

]a2/2

, (5.14)

where Re is the Reynolds number based on Ud and b (note the difference from Re0):

Re =
Udb

ν
. (5.15)

Note that, because of (5.4), Re is independent of time for large time.
The eddy viscosity profile (5.13), the mean velocity profile (5.14) and its first

derivative (i.e. the mean shear profile) are compared with results from direct numerical
simulations after quasi-steady states are reached. The comparisons are performed as
follows. The velocity deficit Ud is obtained directly from numerical results. The value
of ψ0 is obtained based on the eddy viscosity at the free surface; ψa is obtained based
on the averaged eddy viscosity in the bulk of the flow; while b is determined by
matching f(η) in (5.14) with the numerical value at the depth η = −1, and the value
of a is obtained by a least-square best fit of (5.13).

The values of Ud and b thus obtained at various times are listed in table 1. In
agreement with (5.4), the product C0 = Udb approaches a constant value at large times
(the fluctuation in C0 is less than 1% for t >∼ 60). Figure 8 shows the comparisons
of the time evolution of Ud and b between the theoretical behaviour given by (5.10),
(5.11) and that obtained from direct simulations (the values of C0, ψa and Q used
are listed in table 2). For the range of Reynolds numbers considered, the analytical
solutions fit the computed behaviour of decreasing Ud and increasing b with time
with remarkable accuracy.

Figure 9 compares the eddy viscosity given by (5.13) with DNS results at t = 60,
70, 80. There are small differences in the deep region, which can be attributed to the
use of a constant eddy viscosity in the similarity solution there. Our main interest is
the region near the free surface where figure 9 shows that the Gaussian profile (5.13)
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Re0 C0 Re ψa ψ0 νe0/ν Q a a(ν/νea)
−1/2

700 1.04 728 0.0228 0.0014 1.05 −0.65 0.305 1.24
1000 1.02 1020 0.0229 0.00098 1.00 −0.14 0.251 1.21
1400 1.01 1414 0.0224 0.00078 1.10 −0.03 0.215 1.22

Table 2. Values of C0, Re, ψa, ψ0, νe0/ν, Q, a and a(ν/νea)
−1/2, for different Re0.
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Figure 8. Time evolution of Ud and b for Re0 = 700, 1000, and 1400 for: DNS results (◦ for Ud, �
for b; and similarity solution (———— for Ud, – – – – for b) .

fits the DNS νe well in the near-surface region. As will be seen, (5.13) is sufficient to
describe the detailed characteristics of the turbulent diffusion near the free surface.

Figure 10 shows similar comparisons for the mean velocity and figure 11 the mean
shear rate. The agreement is quite good in both cases. (Note that small differences
in the deeper region are due to the fact that the DNS turbulent flow underneath
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Figure 9. Comparison of the eddy viscosity profile between the similarity solution (————) and
the DNS results at: ◦, t = 60; �, t = 70; and �, t = 80; for Re0 = 700, 1000, and 1400.

is not perfectly statistically homogeneous. Our main interest is in the near-surface
region.) These two figures also confirm the similarity assumption that the mean flow
approaches a universal shape at large times, although the physical values of the mean
flow itself change with time (figures 2b and 7a).

5.3. Scaling properties of the free-surface boundary layer

As pointed out in § 5.1, one anticipates that the parameters a and ψ0 should depend
on the Reynolds number (since they describe properties of the outer layer), while ψa
should be independent of the Reynolds number, as it describes the value of the eddy
viscosity outside the outer layer. These are confirmed in table 2.

On the right-hand side of (5.14), the first (Gaussian) factor is what one would obtain
in a constant eddy viscosity model, while the second factor is associated with the
variation of eddy viscosity near the surface and, in particular, contains the essential
information about the inner layer. Using a small-η (η � a) expansion of (5.14) we
obtain

f(η) ≈
[

1/Re+ ψ0

1/Re+ ψ0 + (ψa − ψ0)η2/a2

]a2/2

(1− η2/2). (5.16)

Let ε be the non-dimensional thickness of the inner layer. Upon substitution of η = εζ
(with ζ being of order one) into (5.16), and using a dominant balance argument for
the expression in the denominator of the right-hand side of (5.16), we obtain

ε ∼ a
(

1/Re+ ψ0

ψa − ψ0

)1/2

, (5.17)
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Figure 10. Comparison of the mean velocity profile between the similarity solution (————)
and the DNS results at: ◦, t = 60; �, t = 70; and �, t = 80; for Re0 = 700, 1000, and 1400.

or equivalently,

ε ∼ a
(
ν + νe0

νea − νe0
)1/2

. (5.18)

Equation (5.18) shows that the thickness of the inner layer, ε, is scaled by the
thickness of the outer layer, a. It also shows that the value of the eddy viscosity at
the free surface, νe0, enters into the estimate of the inner layer, and is therefore an
important physical parameter of the problem.

We now turn to the dependence of νe0 on the parameters of the problem. Based on
(4.9), we can assume that the value of νe0 depends on the following parameters: (i)
the horizontal turbulence intensity at the free surface, q0; (ii) the characteristic lateral
size of the vortical structures attached on the free surface, λ0; and (iii) the molecular
viscosity, ν. It follows from dimensional analysis that

νe0

ν
= F

(
Reλ ≡ q0λ0

ν

)
. (5.19)

For a given free-surface shear-flow turbulence characterized by Reλ, (5.19) indicates
that the value of the eddy viscosity at the free surface scales like the value of the
molecular kinematic viscosity. This fact is confirmed by our DNS data where the
factor of proportionality between νe0 and ν is found to be close to unity for a range
of Re0 (see table 2).

Interestingly, the similarity theory provides us also with a scaling relationship for
the thickness of the outer layer. The estimate comes out in an indirect manner,
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Figure 11. Comparison of the mean shear profile between the similarity solution (————) and
the DNS results at: ◦, t = 60; �, t = 70; and �, t = 80; for Re0 = 700, 1000, and 1400.

through the requirement that the mean shear in the flow remains bounded at all
Reynolds numbers.

Consistently with our discussion so far, and supported by DNS results, we assume
that ψa � 1/Re, whereas ψ0 is comparable to 1/Re. Based on this and using the
small-argument approximation, we find that the location of the maximum shear near
the free surface is

ηm ≈ −a
[

1/Re+ ψ0

(1 + a2)ψa − ψ0

]1/2

. (5.20)

Therefore the maximum mean shear sm ≡ f′|max is

sm ≈ a(Reψa)1/2 (1 + a2 − ψ0/ψa)
1/2(1 + (Reψa)

−1)

(2 + a2 − 2ψ0/ψa)(1 + Reψ0)1/2
. (5.21)

Given that ψ0 has the same order of magnitude as 1/Re, we conclude that sm remains
bounded for Re→∞ only if a(Reψa)

1/2 is at most order one, i.e. a is at most

a ∼ (Reψa)
−1/2 =

(
ν

νea

)1/2

. (5.22)

The decrease of the outer layer thickness as Reynolds number increases is evident
in figures 9 and 11 for the DNS results. A more quantitative DNS confirmation
is provided in table 2 which shows that the product a(ν/νea)

−1/2 is approximately
constant.

It should be noted that the scaling relations (5.17) and (5.22) are not particular to
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the eddy viscosity fitting (5.13). In fact they can be obtained directly from (5.12) by
expanding ψ(η) for small argument. Writing ψ(η) = ψ0 + ψ′′(0)η2/2 + . . ., and noting
that in general the non-dimensional thickness of the outer layer a is proportional to
ψa/ψ

′′(0) (because of 4.12)), the derivation follows along the same lines as those we
presented above.

Finally, we note that our DNS verification of the theoretical scaling results is
limited to small Reynolds numbers. It would be very desirable to seek more com-
plete/systematic numerical confirmation of these results. This is difficult primarily
because of the fundamental limitations of DNS for high Reynolds numbers. Further
examination using other approaches and especially experimental measurements would
be helpful.

6. Implications for large-eddy simulation of free-surface turbulence
The understanding of the physics of turbulent diffusion near the free surface is

essential to the modelling of free-surface turbulence (FST). In the preceding sections,
we obtained the essential characteristics of free-surface turbulence and found that the
averaged turbulence diffusion behaviour can be effectively described by a similarity
solution. This understanding has immediate implications for modelling of free-surface
turbulence in different contexts such as Reynolds-averaged Navier–Stokes (RANS)
equations or large-eddy simulations (LES). In this section, we illustrate one such
application in the development of a subgrid-scale (SGS) model for LES of free-
surface turbulence.

In LES, the grid-scale motions are resolved while the subgrid-scale effects are

modelled. For any variable φ(x, y, z), its grid-scale portion φ̂(x, y, z) is obtained by
using a low-pass filter G(x− ξ, y − η, z − ζ):

φ̂(x, y, z) =

∫ ∫ ∫
φ(ξ, η, ζ)G(x− ξ, y − η, z − ζ) dξ dη dζ. (6.1)

The governing equations for the grid-scale motions are

∂ûk

∂xk
= 0, (6.2)

and
∂ûi

∂t
+
∂ûiûj

∂xj
+
∂τij

∂xj
= − ∂p̂

∂xi
+ ν

∂2ûi

∂xj∂xj
, (6.3)

where τij are the SGS stresses defined by

τij = ûiuj − ûiûj . (6.4)

The SGS stresses reflect the contribution of SGS motions and are to be modelled as
functions of grid-scale quantities. A commonly used model is the Smagorinsky model

τij = −2CS ∆̂2|Ŝ |Ŝij , (6.5)

where Ŝij ≡ (∂ûi/∂xj + ∂ûj/∂xi)/2, |Ŝ | = (2Ŝij Ŝij)
1/2, ∆̂ is the grid filter width, and CS

is the Smagorinsky coefficient to be determined.
In the present problem, the horizontal plane is statistically homogeneous and we

assume that the Smagorinsky coefficient is a function of depth and time only, i.e.
CS = CS (z, t). The key to the success of the LES is to correctly capture the spatial
variation of the Smagorinsky coefficient near the free surface. Based on the findings
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of the preceding sections, we propose a free-surface function model (FFM) for the
SGS stresses. In this model, we simply assume that CS has similar behaviour to the
turbulence diffusivity:

CS (z, t) = CSa − (CSa − CS0) exp [−(z/`S (t))2], (6.6)

where CSa and CS0 are respectively the values of CS in the bulk and at the free surface,
and `S is the (time-dependent) length scale of the variation of the Smagorinsky
coefficient.

To evaluate the validity of the FFM (6.6), we first perform a priori tests (cf. Clark,
Ferziger & Reynolds 1979; McMillan, Ferziger & Rogallo 1980) wherein the right-
hand side of (6.5) is evaluated and compared to (6.4) using a DNS dataset (where all
the scales are solved). To do this, we apply a Gaussian grid filter (Kwak, Reynolds &
Ferziger 1975) in the (periodic) horizontal directions and a discrete grid filter in the
vertical direction given by

G(x− ξ, y − η, z − ζ) = G1(x− ξ)G2(y − η)G3(z − ζ), (6.7)

G1(x− ξ) = (6/π)1/2 exp [−6(x− ξ)2/∆̂2
x], (6.8)

G2(y − η) = (6/π)1/2 exp [−6(y − η)2/∆̂2
y], (6.9)

G3(z − ζ) = [δ(z − ζ − ∆̂z) + 2δ(z − ζ) + δ(z − ζ + ∆̂z)]/4. (6.10)

Here δ is the Dirac function; ∆̂x (= 0.6545), ∆̂y (= 0.6545) and ∆̂z (= 0.0625) are the
filter widths in the x-, y- and z- directions, respectively and the overall filter width is

given by ∆̂ ≡ (∆̂x∆̂y∆̂z)
1/3 (= 0.2992).

Figure 12 plots the horizontally averaged CS obtained from (6.5) using DNS data
for the Re0 = 1400 case of § 4 compared to that given by (6.6). The best fit values for
the model parameters in figure 12 are CSa ≈ 0.019 (a value in agreement with those
found in shear flow turbulence, cf. Rogallo & Moin 1984; Lesieur & Metais 1996),
CS0 ≈ 0.003, and `S/a ≈ 0.6. The decrease of CS towards the free surface is consistent
with the results of the preceding sections, and the fit to the Gaussian profile is quite
acceptable.

We now proceed with a posteriori tests of the FFM. In these tests, the SGS model
is used directly in LES and the results then compared to higher resolution DNS. For
the LES, we use a coarse 322 × 96 grid (the DNS grid is 1282 × 192). For the initial
condition, we use DNS data at t = 60 filtered by (6.7). The LES results are compared
to filtered DNS data after dimensionless time 10 at t = 70.

Figure 13 evaluates the a posteriori performance of LES using FFM. For the
intensity of the (grid-scale) turbulence fluctuation q̂2 ≡ û′2 + v̂′2 + ŵ′2 (figure 13a), the
comparison between the FFM and DNS profiles is excellent. Also shown is the result
when a constant Smagorinsky coefficient (say, given by its bulk value) is used. In this
case, the turbulence intensity in the near-surface region is over damped, as expected,
since the constant Smagorinsky coefficient is unable to capture the decaying turbulent
diffusion towards the free surface. For reference, we also plot in figure 13(a) the result
when no SGS model is used in the coarse-grid simulation. Without the SGS stresses,
the prediction is clearly inadequate. Similar results and conclusions obtain also for
the mean (grid-scale) shear rate as shown in figure 13(b).

These results show that, by capturing the turbulence diffusion behaviour of free-
surface turbulence, the FFM provides an effective SGS model for LES of free-surface
turbulence. We remark finally that the FFM extends in a straightforward way to
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dynamic LES schemes (Germano et al. 1991). For free-surface turbulence, the dynamic
schemes (DTM) of Salvetti & Banerjee (1995) and Salvetti et al. (1997) have been
shown to capture the anisotropy and SGS energy transfer near the free surface.
Whether models such as the FFM can provide further improvements is clearly
of interest. The Germano-dynamic and other extensions of FFM and a detailed
evaluation of the results are subjects of a follow-up paper.

7. Conclusions
In this paper we investigate the process of turbulent diffusion in a shear flow

under a free surface. We obtain an ensemble of simulation results using DNS. Using
these data, we identify the free-surface boundary layer structures: an outer layer
characterized by the reduction of the eddy viscosity and an accompanying increase
of the mean shear rate; and an inner layer characterized by the rapid decrease of
the mean shear rate to reach its vanishing value at the free surface. We find that
quantitative definitions of the outer and inner thicknesses can be obtained directly
from the mean shear profile corresponding respectively to first its local minimum and
then its local maximum as the free surface is approached.

Guided by DNS results, we derive a similarity theory for the vertical turbulent
diffusivity problem. An important feature of the similarity solution is the specification
of a universal shape for the mean velocity profile. This and other predictions of
the similarity theory are confirmed by direct comparisons to DNS. Significantly, the
similarity solution provides the scaling for the thickness of the inner and outer surface
layers as a function of the Reynolds number: the inner layer thickness is proportional
to the outer layer thickness; the outer layer thickness is proportional to the mean
shear depth; and the factors of proportionality in both cases scale as the square
root of the ratio of the molecular viscosity to the bulk eddy viscosity. Thus, the
free-surface boundary layers define the region of the flow which remains Reynolds
number dependent at high Reynolds numbers.

The above results provide a fundamental basis for the modelling of turbulence at
a free surface. As an illustration, we propose a free-surface function model (FFM)
for large-eddy simulation of free-surface turbulence. This new model incorporates
the expected near free-surface behaviour of the turbulence diffusivity and is an
improvement over classical models using constant coefficients. This is borne out by a
priori and a posteriori tests against DNS.

We remark that the concept of free-surface boundary layer(s) itself is not new
(see § 1). In a previous study (Shen et al. 1999), we identified at the free surface an
inner ‘surface’ layer and an outer ‘blockage’ layer. The inner ‘surface’ layer in Shen
et al. (1999) is closely related to the inner layer here – both are direct results of the
vanishing tangential stress condition at the free surface. The former was established
based on vanishing vorticity components at the surface, while in the present work,
the inner layer is quantified by the mean shear rate which vanishes at the surface.

The ‘blockage’ layer of Shen et al. (1999) is a kinematic consequence of the
boundary condition at the free surface. This kinematic ‘blockage’ layer is obtained
only qualitatively and, from continuity, has a thickness of the order of the integral
scale. The present outer layer, on the other hand, is a direct measure of the region
over which turbulence diffusivity is affected by the presence of the free surface. As
such, the thickness of this outer layer is a function of Reynolds number (given by
(5.22)). In terms of the dynamics of free-surface turbulence, the present notion of the
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free-surface inner and outer layers provides an important understanding and model
of the near-surface turbulent flow.

Finally, with the more comprehensive picture of the free-surface layers obtained
from this and previous work, it is instructive to compare the inner/outer free-surface
layer structure found here to the structure of the boundary layer at a solid wall.
In both cases there is an inner layer much thinner than the outer one. Within this
inner layer diffusion is due predominantly to viscosity which determines the scaling
of its thickness. There exists an important difference between the two however. At the
solid wall, fluid motion in all directions vanishes, energy dissipation is large inside
the wall boundary layer, and the flow becomes laminar close enough to the wall.
In contrast, the free surface restricts motion in the normal direction only. Inside
the (inner) free-surface boundary layer, energy dissipation is reduced as a result of
the zero-stress surface condition, and horizontal velocity fluctuations in fact increase
towards the surface.

This research was financially supported by the Office of Naval Research under the
program management of Dr E. P. Rood.
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